Learn R Programming

mlr3fairness (version 0.4.0)

mlr_learners_regr.fairnclm: Regression Non-convex Fair Regression Learner

Description

Calls fairml::nclm from package fairml.

Arguments

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("regr.fairnclm")
lrn("regr.fairnclm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, fairml

Parameters

IdTypeDefaultLevelsRange
lambdanumeric0\([0, \infty)\)
save.auxiliarylogicalFALSETRUE, FALSE-
covfununtyped"stats::cov"-
unfairnessnumeric-\([0, 1]\)

Author

pfistfl

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFairnclm

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrFairnclm$new()


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrFairnclm$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

Fair regression model based on nonconvex optimization from Komiyama et al. (2018). Implemented via package fairml. The 'unfairness' parameter is set to 0.05 as a default.

References

J K, A T, J H, H S (2018). “Nonconvex Optimization for Regression with Fairness Constraints.” In Proceedings of the 35th International Conference on Machine Learning (ICML), PMLR 80, 2737-2746.

See Also

Dictionary of Learners: mlr3::mlr_learners

Other fairness_learners: mlr_learners_classif.fairfgrrm, mlr_learners_classif.fairzlrm, mlr_learners_regr.fairfrrm, mlr_learners_regr.fairzlm

Examples

Run this code
if (FALSE) { # rlang::is_installed("fairml")
library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("regr.fairnclm"))
print(learner)

# available parameters:
learner$param_set$ids()
}

Run the code above in your browser using DataLab