# Feature Selection
# \donttest{
# retrieve task and load learner
task = tsk("pima")
learner = lrn("classif.rpart")
# create design
design = mlr3misc::rowwise_table(
~age, ~glucose, ~insulin, ~mass, ~pedigree, ~pregnant, ~pressure, ~triceps,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE,
TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE,
TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE
)
# run feature selection on the Pima Indians diabetes data set
instance = fselect(
fselector = fs("design_points", design = design),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")
)
# best performing feature set
instance$result
# all evaluated feature sets
as.data.table(instance$archive)
# subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)
# }
Run the code above in your browser using DataLab