eXtreme Gradient Boosting regression.
Calls xgboost::xgb.train()
from package xgboost.
To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.
Note that using the watchlist
parameter directly will lead to problems when wrapping this Learner
in a
mlr3pipelines
GraphLearner
as the preprocessing steps will not be applied to the data in the watchlist.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.xgboost")
lrn("regr.xgboost")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3learners, xgboost
Id | Type | Default | Levels | Range |
alpha | numeric | 0 | \([0, \infty)\) | |
approxcontrib | logical | FALSE | TRUE, FALSE | - |
base_score | numeric | 0.5 | \((-\infty, \infty)\) | |
booster | character | gbtree | gbtree, gblinear, dart | - |
callbacks | untyped | list | - | |
colsample_bylevel | numeric | 1 | \([0, 1]\) | |
colsample_bynode | numeric | 1 | \([0, 1]\) | |
colsample_bytree | numeric | 1 | \([0, 1]\) | |
disable_default_eval_metric | logical | FALSE | TRUE, FALSE | - |
early_stopping_rounds | integer | NULL | \([1, \infty)\) | |
early_stopping_set | character | none | none, train, test | - |
eta | numeric | 0.3 | \([0, 1]\) | |
eval_metric | untyped | rmse | - | |
feature_selector | character | cyclic | cyclic, shuffle, random, greedy, thrifty | - |
feval | untyped | - | ||
gamma | numeric | 0 | \([0, \infty)\) | |
grow_policy | character | depthwise | depthwise, lossguide | - |
interaction_constraints | untyped | - | - | |
iterationrange | untyped | - | - | |
lambda | numeric | 1 | \([0, \infty)\) | |
lambda_bias | numeric | 0 | \([0, \infty)\) | |
max_bin | integer | 256 | \([2, \infty)\) | |
max_delta_step | numeric | 0 | \([0, \infty)\) | |
max_depth | integer | 6 | \([0, \infty)\) | |
max_leaves | integer | 0 | \([0, \infty)\) | |
maximize | logical | NULL | TRUE, FALSE | - |
min_child_weight | numeric | 1 | \([0, \infty)\) | |
missing | numeric | NA | \((-\infty, \infty)\) | |
monotone_constraints | untyped | 0 | - | |
normalize_type | character | tree | tree, forest | - |
nrounds | integer | - | \([1, \infty)\) | |
nthread | integer | 1 | \([1, \infty)\) | |
ntreelimit | integer | NULL | \([1, \infty)\) | |
num_parallel_tree | integer | 1 | \([1, \infty)\) | |
objective | untyped | reg:squarederror | - | |
one_drop | logical | FALSE | TRUE, FALSE | - |
outputmargin | logical | FALSE | TRUE, FALSE | - |
predcontrib | logical | FALSE | TRUE, FALSE | - |
predictor | character | cpu_predictor | cpu_predictor, gpu_predictor | - |
predinteraction | logical | FALSE | TRUE, FALSE | - |
predleaf | logical | FALSE | TRUE, FALSE | - |
print_every_n | integer | 1 | \([1, \infty)\) | |
process_type | character | default | default, update | - |
rate_drop | numeric | 0 | \([0, 1]\) | |
refresh_leaf | logical | TRUE | TRUE, FALSE | - |
reshape | logical | FALSE | TRUE, FALSE | - |
sampling_method | character | uniform | uniform, gradient_based | - |
sample_type | character | uniform | uniform, weighted | - |
save_name | untyped | - | ||
save_period | integer | NULL | \([0, \infty)\) | |
scale_pos_weight | numeric | 1 | \((-\infty, \infty)\) | |
seed_per_iteration | logical | FALSE | TRUE, FALSE | - |
skip_drop | numeric | 0 | \([0, 1]\) | |
strict_shape | logical | FALSE | TRUE, FALSE | - |
subsample | numeric | 1 | \([0, 1]\) | |
top_k | integer | 0 | \([0, \infty)\) | |
training | logical | FALSE | TRUE, FALSE | - |
tree_method | character | auto | auto, exact, approx, hist, gpu_hist | - |
tweedie_variance_power | numeric | 1.5 | \([1, 2]\) | |
updater | untyped | - | - | |
verbose | integer | 1 | \([0, 2]\) | |
watchlist | untyped | - | ||
xgb_model | untyped | - |
Early stopping can be used to find the optimal number of boosting rounds.
The early_stopping_set
parameter controls which set is used to monitor the performance.
Set early_stopping_set = "test"
to monitor the performance of the model on the test set while training.
The test set for early stopping can be set with the "test"
row role in the mlr3::Task.
Additionally, the range must be set in which the performance must increase with early_stopping_rounds
and the maximum number of boosting rounds with nrounds
.
While resampling, the test set is automatically applied from the mlr3::Resampling.
Not that using the test set for early stopping can potentially bias the performance scores.
See the section on early stopping in the examples.
nrounds
:
Actual default: no default.
Adjusted default: 1.
Reason for change: Without a default construction of the learner
would error. Just setting a nonsense default to workaround this.
nrounds
needs to be tuned by the user.
nthread
:
Actual value: Undefined, triggering auto-detection of the number of CPUs.
Adjusted value: 1.
Reason for change: Conflicting with parallelization via future.
verbose
:
Actual default: 1.
Adjusted default: 0.
Reason for change: Reduce verbosity.
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrXgboost
importance()
The importance scores are calculated with xgboost::xgb.importance()
.
LearnerRegrXgboost$importance()
Named numeric()
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrXgboost$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chen, Tianqi, Guestrin, Carlos (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 785--794. ACM. tools:::Rd_expr_doi("10.1145/2939672.2939785").
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr_learners
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.nnet
,
mlr_learners_classif.qda
,
mlr_learners_classif.ranger
,
mlr_learners_classif.svm
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.kknn
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.nnet
,
mlr_learners_regr.ranger
,
mlr_learners_regr.svm
if (requireNamespace("xgboost", quietly = TRUE)) {
learner = mlr3::lrn("regr.xgboost")
print(learner)
# available parameters:
learner$param_set$ids()
}
# Train learner with early stopping on spam data set
task = tsk("mtcars")
# Split task into training and test set
split = partition(task, ratio = 0.8)
task$set_row_roles(split$test, "test")
# Set early stopping parameter
learner = lrn("regr.xgboost",
nrounds = 1000,
early_stopping_rounds = 100,
early_stopping_set = "test"
)
# Train learner with early stopping
learner$train(task)
Run the code above in your browser using DataLab