if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)
set.seed(2906)
fun = function(xs) {
list(y = xs$x ^ 2 + rnorm(length(xs$x), mean = 0, sd = 1))
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun,
domain = domain,
codomain = codomain,
properties = "noisy")
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
learner = lrn("regr.km",
covtype = "matern5_2",
optim.method = "gen",
nugget.estim = TRUE,
jitter = 1e-12,
control = list(trace = FALSE))
surrogate = srlrn(learner, archive = instance$archive)
acq_function = acqf("aei", surrogate = surrogate)
acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
}
Run the code above in your browser using DataLab