Abstract output transformation class.
An output transformation can be used within a Surrogate to perform a transformation of the target variable(s).
label
(character(1)
)
Label for this object.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
packages
(character()
)
Set of required packages.
A warning is signaled if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace()
.
state
(named list()
| NULL
)
List of meta information regarding the parameters and their state.
cols_y
(character()
| NULL
)
Column ids of target variables that should be transformed.
max_to_min
(-1
| 1
)
Multiplicative factor to correct for minimization or maximization.
invert_posterior
(logical(1)
)
Should the posterior predictive distribution be inverted when used within a SurrogateLearner or SurrogateLearnerCollection?
new()
Creates a new instance of this R6 class.
OutputTrafo$new(invert_posterior, label = NA_character_, man = NA_character_)
invert_posterior
(logical(1)
)
Should the posterior predictive distribution be inverted when used within a SurrogateLearner or SurrogateLearnerCollection?
label
(character(1)
)
Label for this object.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
update()
Learn the transformation based on observed data and update parameters in $state
.
Must be implemented by subclasses.
OutputTrafo$update(ydt)
ydt
(data.table::data.table()
)
Data. One row per observation with at least columns $cols_y
.
transform()
Perform the transformation. Must be implemented by subclasses.
OutputTrafo$transform(ydt)
ydt
(data.table::data.table()
)
Data. One row per observation with at least columns $cols_y
.
data.table::data.table()
with the transformation applied to the columns $cols_y
.
inverse_transform_posterior()
Perform the inverse transformation on a posterior predictive distribution characterized by the first and second moment. Must be implemented by subclasses.
OutputTrafo$inverse_transform_posterior(pred)
pred
(data.table::data.table()
)
Data. One row per observation characterizing a posterior predictive distribution with the columns mean
and se
.
data.table::data.table()
with the inverse transformation applied to the columns mean
and se
.
inverse_transform()
Perform the inverse transformation. Must be implemented by subclasses.
OutputTrafo$inverse_transform(ydt)
ydt
(data.table::data.table()
)
Data. One row per observation with at least columns $cols_y
.
data.table::data.table()
with the inverse transformation applied to the columns $cols_y
.
(character(1)
).
(character()
).
clone()
The objects of this class are cloneable with this method.
OutputTrafo$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Output Transformation:
OutputTrafoLog
,
OutputTrafoStandardize
,
mlr_output_trafos