Abstract output transformation class.
An output transformation can be used within a Surrogate to perform a transformation of the target variable(s).
label(character(1))
Label for this object.
man(character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.
packages(character())
Set of required packages.
A warning is signaled if at least one of the packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
state(named list() | NULL)
List of meta information regarding the parameters and their state.
cols_y(character() | NULL)
Column ids of target variables that should be transformed.
max_to_min(-1 | 1)
Multiplicative factor to correct for minimization or maximization.
invert_posterior(logical(1))
Should the posterior predictive distribution be inverted when used within a SurrogateLearner or SurrogateLearnerCollection?
new()Creates a new instance of this R6 class.
OutputTrafo$new(invert_posterior, label = NA_character_, man = NA_character_)invert_posterior(logical(1))
Should the posterior predictive distribution be inverted when used within a SurrogateLearner or SurrogateLearnerCollection?
label(character(1))
Label for this object.
man(character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.
update()Learn the transformation based on observed data and update parameters in $state.
Must be implemented by subclasses.
OutputTrafo$update(ydt)ydt(data.table::data.table())
Data. One row per observation with at least columns $cols_y.
transform()Perform the transformation. Must be implemented by subclasses.
OutputTrafo$transform(ydt)ydt(data.table::data.table())
Data. One row per observation with at least columns $cols_y.
data.table::data.table() with the transformation applied to the columns $cols_y.
inverse_transform_posterior()Perform the inverse transformation on a posterior predictive distribution characterized by the first and second moment. Must be implemented by subclasses.
OutputTrafo$inverse_transform_posterior(pred)pred(data.table::data.table())
Data. One row per observation characterizing a posterior predictive distribution with the columns mean and se.
data.table::data.table() with the inverse transformation applied to the columns mean and se.
inverse_transform()Perform the inverse transformation. Must be implemented by subclasses.
OutputTrafo$inverse_transform(ydt)ydt(data.table::data.table())
Data. One row per observation with at least columns $cols_y.
data.table::data.table() with the inverse transformation applied to the columns $cols_y.
(character(1)).
(character()).
clone()The objects of this class are cloneable with this method.
OutputTrafo$clone(deep = FALSE)deepWhether to make a deep clone.
Other Output Transformation: 
OutputTrafoLog,
OutputTrafoStandardize,
mlr_output_trafos