if (requireNamespace("mlr3learners") &
    requireNamespace("DiceKriging") &
    requireNamespace("rgenoud")) {
  library(bbotk)
  library(paradox)
  library(mlr3learners)
  library(data.table)
  set.seed(2906)
  fun = function(xs) {
    list(y = xs$x ^ 2 + rnorm(length(xs$x), mean = 0, sd = 1))
  }
  domain = ps(x = p_dbl(lower = -10, upper = 10))
  codomain = ps(y = p_dbl(tags = "minimize"))
  objective = ObjectiveRFun$new(fun = fun,
    domain = domain,
    codomain = codomain,
    properties = "noisy")
  instance = OptimInstanceBatchSingleCrit$new(
    objective = objective,
    terminator = trm("evals", n_evals = 5))
  instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
  learner = lrn("regr.km",
    covtype = "matern5_2",
    optim.method = "gen",
    nugget.estim = TRUE,
    jitter = 1e-12,
    control = list(trace = FALSE))
  surrogate = srlrn(learner, archive = instance$archive)
  acq_function = acqf("aei", surrogate = surrogate)
  acq_function$surrogate$update()
  acq_function$update()
  acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
}
Run the code above in your browser using DataLab