Learn R Programming

mlr3measures (version 0.4.0)

pbias: Percent Bias

Description

Regression measure defined as $$ \frac{1}{n} \sum_{i=1}^n w_i \frac{\left( t_i - r_i \right)}{\left| t_i \right|}. $$ Good predictions score close to 0.

Usage

pbias(truth, response, sample_weights = NULL, na_value = NaN, ...)

Arguments

truth

(numeric()) True (observed) values. Must have the same length as response.

response

(numeric()) Predicted response values. Must have the same length as truth.

sample_weights

(numeric()) Vector of non-negative and finite sample weights. Must have the same length as truth. The vector gets automatically normalized to sum to one. Defaults to equal sample weights.

na_value

(numeric(1)) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.

...

(any) Additional arguments. Currently ignored.

Value

Performance value as numeric(1).

Meta Information

  • Type: "regr"

  • Range: \((-\infty, \infty)\)

  • Minimize: NA

  • Required prediction: response

See Also

Other Regression Measures: bias(), ktau(), mae(), mape(), maxae(), maxse(), medae(), medse(), mse(), msle(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), sae(), smape(), srho(), sse()

Examples

Run this code
# NOT RUN {
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
pbias(truth, response)
# }

Run the code above in your browser using DataLab