mlr_pipeops_chunk

0th

Percentile

PipeOpChunk

Chunks its input into outnum chunks. Creates outnum Tasks during training, and simply passes on the input during outnum times during prediction.

Keywords
datasets
Format

R6Class object inheriting from PipeOp.

Construction

PipeOpChunk$new(outnum, id = "chunk", param_vals = list())
  • outnum :: numeric(1) Number of output channels, and therefore number of chunks created.

  • id :: character(1) Identifier of resulting object, default "chunk".

  • param_vals :: named list List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list().

Input and Output

PipeOpChunk has one input channel named "input", taking a Task both during training and prediction.

PipeOpChunk has multiple output channels depending on the options construction argument, named "output1", "output2", ... All output channels produce (respectively disjoint, random) subsets of the input Task during training, and pass on the original Task during prediction.

State

The $state is left empty (list()).

Parameters

  • shuffle :: logical(1) Should the data be shuffled before chunking? Initialized to TRUE.

Internals

Uses the mlr3misc::chunk_vector() function.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

Other PipeOps: PipeOpEnsemble, PipeOpImpute, PipeOpTaskPreproc, PipeOp, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_copy, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_encode, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputehist, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputenewlvl, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_mutate, mlr_pipeops_nop, mlr_pipeops_pca, mlr_pipeops_quantilebin, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_scale, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_unbranch, mlr_pipeops_yeojohnson, mlr_pipeops

Aliases
  • mlr_pipeops_chunk
  • PipeOpChunk
Examples
# NOT RUN {
library("mlr3")

task = tsk("wine")
opc = mlr_pipeops$get("chunk", 2)

# watch the row number: 89 during training (task is chunked)...
opc$train(list(task))

# ... 178 during predict (task is copied)
opc$predict(list(task))
# }
Documentation reproduced from package mlr3pipelines, version 0.1.1, License: LGPL-3

Community examples

Looks like there are no examples yet.