mlr_pipeops_imputehist

0th

Percentile

PipeOpImputeHist

Impute numerical features by histogram.

Keywords
datasets
Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction

PipeOpImputeHist$new(id = "imputehist", param_vals = list())
  • id :: character(1) Identifier of resulting object, default "imputehist".

  • param_vals :: named list List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list().

Input and Output Channels

Input and output channels are inherited from PipeOpImputeHist.

The output is the input Task with all affected numeric features missing values imputed by (column-wise) histogram.

State

The $state is a named list with the $state elements inherited from PipeOpImpute.

The $state$model is a named list of lists containing elements $counts and $breaks.

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Uses the graphics::hist() function. Features that are entirely NA are imputed as 0.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

Other PipeOps: PipeOpEnsemble, PipeOpImpute, PipeOpTaskPreproc, PipeOp, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_copy, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_encode, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputenewlvl, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_mutate, mlr_pipeops_nop, mlr_pipeops_pca, mlr_pipeops_quantilebin, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_scale, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_unbranch, mlr_pipeops_yeojohnson, mlr_pipeops

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputenewlvl, mlr_pipeops_imputesample

Aliases
  • mlr_pipeops_imputehist
  • PipeOpImputeHist
Examples
# NOT RUN {
library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputehist")
new_task = po$train(list(task = task))[[1]]
new_task$missings()

po$state$model
# }
Documentation reproduced from package mlr3pipelines, version 0.1.1, License: LGPL-3

Community examples

Looks like there are no examples yet.