mlr_graphs_bagging

0th

Percentile

Create a bagging learner

Creates a Graph that performs bagging for a supplied graph. This is done as follows:

  • Subsample the data in each step using PipeOpSubsample, afterwards apply graph.

  • Replicate this step iterations times (in parallel)

  • Average outputs of replicated graphs predictions using the averager.

Usage
pipeline_bagging(graph, iterations = 10, frac = 0.7, averager = NULL)
Arguments
graph

PipeOp | Graph A PipeOpLearner or Graph to create a robustifying pipeline for. Outputs from the replicated graphs are connected with the averager.

iterations

integer(1) Number of bagging iterations. Defaults to 10.

frac

numeric(1) Percentage of rows to keep during subsampling. See PipeOpSubsample for more information. Defaults to 0.7.

averager

PipeOp | Graph A PipeOp or Graph that averages the predictions from the replicated and subsampled graph's. In the simplest case, po("classifavg") and po("regravg") can be used in order to perform simple averaging of classification and regression predictions respectively.IfNULL` (default), no averager is added to the end of the graph.

Value

Graph

Aliases
  • mlr_graphs_bagging
  • pipeline_bagging
Examples
# NOT RUN {
library(mlr3)
lrn_po = po("learner", lrn("regr.rpart"))
task = mlr_tasks$get("boston_housing")
gr = pipeline_bagging(lrn_po, 3, averager = po("regravg"))
resample(task, GraphLearner$new(gr), rsmp("holdout"))
# }
Documentation reproduced from package mlr3pipelines, version 0.3.0, License: LGPL-3

Community examples

Looks like there are no examples yet.