library("mlr3")
set.seed(2409)
data = tsk("pima")$data()
data$y = factor(c(NA, sample(letters, size = 766, replace = TRUE), NA))
data$z = ordered(c(NA, sample(1:10, size = 767, replace = TRUE)))
task = TaskClassif$new("task", backend = data, target = "diabetes")
task$missings()
po = po("imputeoor")
new_task = po$train(list(task = task))[[1]]
new_task$missings()
new_task$data()
# recommended use when missing values are expected during prediction on
# factor columns that had no missing values during training
gr = po("imputeoor") %>>%
po("fixfactors") %>>%
po("imputesample", affect_columns = selector_type(types = c("factor", "ordered")))
t1 = as_task_classif(data.frame(l = as.ordered(letters[1:3]), t = letters[1:3]), target = "t")
t2 = as_task_classif(data.frame(l = as.ordered(c("a", NA, NA)), t = letters[1:3]), target = "t")
gr$train(t1)[[1]]$data()
# missing values during prediction are sampled randomly
gr$predict(t2)[[1]]$data()
Run the code above in your browser using DataLab