This calibration method is defined by estimating $$\alpha = \sum \delta_i / \sum H_i(t_i)$$ where \(\delta\) is the observed censoring indicator from the test data, \(H_i\) is the predicted cumulative hazard, and \(t_i\) is the observed survival time.
The standard error is given by $$exp(1/\sqrt{\sum \delta_i})$$
The model is well calibrated if the estimated \(\alpha\) coefficient is equal to 1.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvCalibrationAlpha$new() mlr_measures$get("surv.calib_alpha") msr("surv.calib_alpha")
Type: "surv"
Range: \((-\infty, \infty)\)
Minimize: FALSE
Required prediction: distr
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvCalibrationAlpha
se
(logical(1))
If TRUE
returns the standard error of the measure.
new()
Creates a new instance of this R6 class.
MeasureSurvCalibrationAlpha$new(se = FALSE)
se
(logical(1)
)
If TRUE
returns the standard error of the measure.
clone()
The objects of this class are cloneable with this method.
MeasureSurvCalibrationAlpha$clone(deep = FALSE)
deep
Whether to make a deep clone.
mlr3probavanhouwelingen_2000
Other survival measures:
mlr_measures_surv.beggC
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.gonenC
,
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.harrellC
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.loglossSE
,
mlr_measures_surv.logloss
,
mlr_measures_surv.maeSE
,
mlr_measures_surv.mae
,
mlr_measures_surv.mseSE
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rmseSE
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.unoC
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other calibration survival measures:
mlr_measures_surv.calib_beta
Other distr survival measures:
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.loglossSE
,
mlr_measures_surv.logloss
,
mlr_measures_surv.schmid