Calculates the Integrated Schmid Score, aka integrated absolute loss.
For an individual who dies at time \(t\), with predicted Survival function, \(S\), the Schmid Score at time \(t^*\) is given by $$L(S,t|t^*) = [(S(t^*))I(t \le t^*, \delta = 1)(1/G(t))] + [((1 - S(t^*)))I(t > t^*)(1/G(t^*))]$$ # nolint where \(G\) is the Kaplan-Meier estimate of the censoring distribution.
If integrated == FALSE
then the sample mean is taken for the single specified times
, \(t^*\), and the returned
score is given by
$$L(S,t|t^*) = \frac{1}{N} \sum_{i=1}^N L(S_i,t_i|t^*)$$
where \(N\) is the number of observations, \(S_i\) is the predicted survival function for
individual \(i\) and \(t_i\) is their true survival time.
If integrated == TRUE
then an approximation to integration is made by either taking the sample
mean over all \(T\) unique time-points (method == 1
), or by taking a mean weighted by the difference
between time-points (method == 2
). Then the sample mean is taken over all \(N\) observations.
$$L(S) = \frac{1}{NT} \sum_{i=1}^N \sum_{j=1}^T L(S_i,t_i|t^*_j)$$
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvSchmid$new() mlr_measures$get("surv.schmid") msr("surv.schmid")
Type: "surv"
Range: \([0, \infty)\)
Minimize: TRUE
Required prediction: distr
mlr3::Measure
-> mlr3proba::MeasureSurv
-> mlr3proba::MeasureSurvIntegrated
-> MeasureSurvSchmid
se
(logical(1))
If TRUE
returns the standard error of the measure.
new()
Creates a new instance of this R6 class.
MeasureSurvSchmid$new(integrated = TRUE, times, method = 2, se = FALSE)
integrated
(logical(1)
)
If TRUE
(default), returns the integrated score; otherwise, not integrated.
times
(numeric()
)
If integrate == TRUE
then a vector of time-points over which to integrate the score.
If integrate == FALSE
then a single time point at which to return the score.
method
(integer(1)
)
If integrate == TRUE
selects the integration weighting method.
method == 1
corresponds to weighting each time-point equally and taking the mean score over
discrete time-points. method == 2
corresponds to calculating a mean weighted by the difference
between time-points. method == 2
is default to be in line with other packages.
se
(logical(1)
)
If TRUE
returns the standard error of the measure.
clone()
The objects of this class are cloneable with this method.
MeasureSurvSchmid$clone(deep = FALSE)
deep
Whether to make a deep clone.
mlr3probaschemper_2000 mlr3probaschmid_2011
Other survival measures:
mlr_measures_surv.beggC
,
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.gonenC
,
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.harrellC
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.loglossSE
,
mlr_measures_surv.logloss
,
mlr_measures_surv.maeSE
,
mlr_measures_surv.mae
,
mlr_measures_surv.mseSE
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rmseSE
,
mlr_measures_surv.rmse
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.unoC
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other Probabilistic survival measures:
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.loglossSE
,
mlr_measures_surv.logloss
Other distr survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.loglossSE
,
mlr_measures_surv.logloss