Calculates the cross-entropy, or logarithmic (log), loss.
The logloss, in the context of probabilistic predictions, is defined as the negative log probability density function, \(f\), evaluated at the observation time, \(t\), $$L(f, t) = -log(f(t))$$
The standard error of the Logloss, L, is approximated via, $$se(L) = sd(L)/\sqrt{N}$$ where \(N\) are the number of observations in the test set, and \(sd\) is the standard deviation.
Censored observations in the test set are ignored.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvLogloss$new() mlr_measures$get("surv.logloss") msr("surv.logloss")
Type: "surv"
Range: \([0, \infty)\)
Minimize: TRUE
Required prediction: distr
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvLogloss
eps
(numeric(1)
)
Very small number used to prevent log(0) error.
se
(logical(1))
If TRUE
returns the standard error of the measure.
rm_cens
(logical(1))
If TRUE
removes censored observations from the calculation.
new()
Creates a new instance of this R6 class.
MeasureSurvLogloss$new(eps = 1e-15, se = FALSE, rm_cens = TRUE)
eps
(numeric(1)
)
Very small number to set zero-valued predicted probabilities to in order to prevent errors
in log(0) calculation.
se
(logical(1)
)
If TRUE
returns the standard error of the measure.
rm_cens
(logical(1))
If TRUE
removes censored observations from the calculation.
clone()
The objects of this class are cloneable with this method.
MeasureSurvLogloss$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other survival measures:
mlr_measures_surv.beggC
,
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.gonenC
,
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.harrellC
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss_se
,
mlr_measures_surv.maeSE
,
mlr_measures_surv.mae
,
mlr_measures_surv.mseSE
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rmseSE
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.unoC
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other Probabilistic survival measures:
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss_se
,
mlr_measures_surv.schmid
Other distr survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.grafSE
,
mlr_measures_surv.graf
,
mlr_measures_surv.intloglossSE
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss_se
,
mlr_measures_surv.schmid