
Wrapper around PipeOpProbregrCompositor to simplify Graph creation.
pipeline_probregrcompositor(
learner,
learner_se = NULL,
dist = "Normal",
graph_learner = FALSE
)
[mlr3::Learner]|[mlr3pipelines::PipeOp]|[mlr3pipelines::Graph]
Either a Learner
which will be wrapped in mlr3pipelines::PipeOpLearner, a PipeOp
which will
be wrapped in mlr3pipelines::Graph or a Graph
itself. Underlying Learner
should be
LearnerRegr.
[mlr3::Learner]|[mlr3pipelines::PipeOp]
Optional LearnerRegr with predict_type se
to estimate the standard
error. If left NULL
then learner
must have se
in predict_types.
character(1)
Location-scale distribution to use for composition.
Current possibilities are' "Cauchy", "Gumbel", "Laplace", "Logistic", "Normal
(default).
logical(1)
If TRUE
returns wraps the Graph as a
GraphLearner otherwise (default) returns as a Graph
.
Other pipelines:
mlr_graphs_crankcompositor
,
mlr_graphs_distrcompositor
,
mlr_graphs_survaverager
,
mlr_graphs_survbagging
,
mlr_graphs_survtoregr
# NOT RUN {
if (requireNamespace("mlr3pipelines", quietly = TRUE) &&
requireNamespace("rpart", quietly = TRUE)) {
library("mlr3")
library("mlr3pipelines")
task = tsk("boston_housing")
# method 1 - one learner for response and se
pipe = ppl(
"probregrcompositor",
learner = lrn("regr.featureless", predict_type = "se"),
dist = "Normal"
)
pipe$train(task)
pipe$predict(task)
# method 2 - one learner for response and one for se
pipe = ppl(
"probregrcompositor",
learner = lrn("regr.rpart"),
learner_se = lrn("regr.featureless", predict_type = "se"),
dist = "Logistic"
)
pipe$train(task)
pipe$predict(task)
}
# }
Run the code above in your browser using DataLab