Learn R Programming

mlr3proba (version 0.4.9)

mlr_measures_surv.mae: Mean Absolute Error Survival Measure

Description

Calculates the mean absolute error (MAE).

The MAE is defined by $$\frac{1}{n} \sum |t - \hat{t}|$$ where \(t\) is the true value and \(\hat{t}\) is the prediction.

Censored observations in the test set are ignored.

Arguments

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

MeasureSurvMAE$new()
mlr_measures$get("surv.mae")
msr("surv.mae")

Meta Information

  • Type: "surv"

  • Range: \([0, \infty)\)

  • Minimize: TRUE

  • Required prediction: response

Super classes

mlr3::Measure -> mlr3proba::MeasureSurv -> MeasureSurvMAE

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

MeasureSurvMAE$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

MeasureSurvMAE$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib, mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr, mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other response survival measures: mlr_measures_surv.mse, mlr_measures_surv.rmse