# NOT RUN {
if (requireNamespace("mlr3pipelines", quietly = TRUE) &&
requireNamespace("rpart", quietly = TRUE)) {
library(mlr3)
library(mlr3pipelines)
set.seed(1)
task = tsk("boston_housing")
# Option 1: Use a learner that can predict se
learn = lrn("regr.featureless", predict_type = "se")
pred = learn$train(task)$predict(task)
poc = po("compose_probregr")
poc$predict(list(pred, pred))[[1]]
# Option 2: Use two learners, one for response and the other for se
learn_response = lrn("regr.rpart")
learn_se = lrn("regr.featureless", predict_type = "se")
pred_response = learn_response$train(task)$predict(task)
pred_se = learn_se$train(task)$predict(task)
poc = po("compose_probregr")
poc$predict(list(pred_response, pred_se))[[1]]
}
# }
Run the code above in your browser using DataLab