# NOT RUN {
if (requireNamespace("mlr3pipelines", quietly = TRUE)) {
library(mlr3)
library(mlr3pipelines)
# simple example
pred = PredictionRegr$new(row_ids = 1:10, truth = 1:10, response = 1:10)
po = po("trafopred_regrsurv")
# assume no censoring
new_pred = po$predict(list(pred = pred, task = NULL))[[1]]
po$train(list(NULL, NULL))
print(new_pred)
# add censoring
task_surv = tsk("rats")
task_regr = po("trafotask_survregr", method = "omit")$train(list(task_surv, NULL))[[1]]
learn = lrn("regr.featureless")
pred = learn$train(task_regr)$predict(task_regr)
po = po("trafopred_regrsurv")
new_pred = po$predict(list(pred = pred, task = task_surv))[[1]]
all.equal(new_pred$truth, task_surv$truth())
}
# }
Run the code above in your browser using DataLab