Learn R Programming

mlr3spatiotempcv (version 1.0.1)

ResamplingRepeatedSpCVCoords: (sperrorest) Repeated coordinate-based k-means clustering

Description

(sperrorest) Repeated coordinate-based k-means clustering

(sperrorest) Repeated coordinate-based k-means clustering

Arguments

mlr3spatiotempcv notes

The 'Description' and 'Details' fields are inherited from the respective upstream function.

For a list of available arguments, please see sperrorest::partition_cv.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVCoords

Active bindings

iters

integer(1) Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Method new()

Create an "coordinate-based" repeated resampling instance.

For a list of available arguments, please see sperrorest::partition_cv.

Usage

ResamplingRepeatedSpCVCoords$new(id = "repeated_spcv_coords")

Arguments

id

character(1) Identifier for the resampling strategy.

Method folds()

Translates iteration numbers to fold number.

Usage

ResamplingRepeatedSpCVCoords$folds(iters)

Arguments

iters

integer() Iteration number.

Method repeats()

Translates iteration numbers to repetition number.

Usage

ResamplingRepeatedSpCVCoords$repeats(iters)

Arguments

iters

integer() Iteration number.

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingRepeatedSpCVCoords$instantiate(task)

Arguments

task

Task A task to instantiate.

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingRepeatedSpCVCoords$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. 10.1109/igarss.2012.6352393.

Examples

Run this code
# NOT RUN {
library(mlr3)
task = tsk("diplodia")

# Instantiate Resampling
rrcv = rsmp("repeated_spcv_coords", folds = 3, repeats = 5)
rrcv$instantiate(task)

# Individual sets:
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

# Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

# Internal storage:
rrcv$instance # table
# }

Run the code above in your browser using DataLab