Learn R Programming

mlr3spatiotempcv (version 1.0.1)

ResamplingRepeatedSpCVEnv: (blockCV) Repeated "environmental blocking" resampling

Description

(blockCV) Repeated "environmental blocking" resampling

(blockCV) Repeated "environmental blocking" resampling

Arguments

mlr3spatiotempcv notes

The 'Description' and 'Details' fields are inherited from the respective upstream function.

For a list of available arguments, please see blockCV::envBlock.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVEnv

Active bindings

iters

integer(1) Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Method new()

Create an "Environmental Block" repeated resampling instance.

For a list of available arguments, please see blockCV::envBlock.

Usage

ResamplingRepeatedSpCVEnv$new(id = "repeated_spcv_env")

Arguments

id

character(1) Identifier for the resampling strategy.

Method folds()

Translates iteration numbers to fold number.

Usage

ResamplingRepeatedSpCVEnv$folds(iters)

Arguments

iters

integer() Iteration number.

Method repeats()

Translates iteration numbers to repetition number.

Usage

ResamplingRepeatedSpCVEnv$repeats(iters)

Arguments

iters

integer() Iteration number.

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingRepeatedSpCVEnv$instantiate(task)

Arguments

task

Task A task to instantiate.

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingRepeatedSpCVEnv$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models.” bioRxiv. 10.1101/357798.

Examples

Run this code
# NOT RUN {
if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
  library(mlr3)
  task = tsk("ecuador")

  # Instantiate Resampling
  rrcv = rsmp("repeated_spcv_env", folds = 4, repeats = 2)
  rrcv$instantiate(task)

  # Individual sets:
  rrcv$train_set(1)
  rrcv$test_set(1)
  intersect(rrcv$train_set(1), rrcv$test_set(1))

  # Internal storage:
  rrcv$instance
}
# }

Run the code above in your browser using DataLab