Learn R Programming

mlr3spatiotempcv (version 1.0.1)

ResamplingRepeatedSpCVTiles: (sperrorest) Repeated spatial "tiles" resampling

Description

(sperrorest) Repeated spatial "tiles" resampling

(sperrorest) Repeated spatial "tiles" resampling

Arguments

mlr3spatiotempcv notes

The 'Description' and 'Note' fields are inherited from the respective upstream function.

For a list of available arguments, please see sperrorest::partition_tiles.

This method is similar to ResamplingSpCVBlock.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVTiles

Active bindings

iters

integer(1) Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Method new()

Create a "Spatial 'Tiles' resampling" resampling instance.

For a list of available arguments, please see sperrorest::partition_tiles.

Usage

ResamplingRepeatedSpCVTiles$new(id = "repeated_spcv_tiles")

Arguments

id

character(1) Identifier for the resampling strategy.

Method folds()

Translates iteration numbers to fold number.

Usage

ResamplingRepeatedSpCVTiles$folds(iters)

Arguments

iters

integer() Iteration number.

Method repeats()

Translates iteration numbers to repetition number.

Usage

ResamplingRepeatedSpCVTiles$repeats(iters)

Arguments

iters

integer() Iteration number.

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingRepeatedSpCVTiles$instantiate(task)

Arguments

task

Task A task to instantiate.

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingRepeatedSpCVTiles$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. 10.1109/igarss.2012.6352393.

See Also

ResamplingSpCVBlock

Examples

Run this code
# NOT RUN {
if (mlr3misc::require_namespaces("sperrorest", quietly = TRUE)) {
  library(mlr3)
  task = tsk("ecuador")

  # Instantiate Resampling
  rrcv = rsmp("repeated_spcv_tiles",
    repeats = 2,
    nsplit = c(4L, 3L), reassign = FALSE)
  rrcv$instantiate(task)

  # Individual sets:
  rrcv$iters
  rrcv$folds(10:12)
  rrcv$repeats(10:12)

  # Individual sets:
  rrcv$train_set(1)
  rrcv$test_set(1)
  intersect(rrcv$train_set(1), rrcv$test_set(1))

  # Internal storage:
  rrcv$instance # table
}
# }

Run the code above in your browser using DataLab