Learn R Programming

mlr3spatiotempcv (version 1.0.1)

ResamplingSpCVDisc: (sperrorest) Spatial "disc" resampling

Description

(sperrorest) Spatial "disc" resampling

(sperrorest) Spatial "disc" resampling

Arguments

mlr3spatiotempcv notes

The 'Description' and 'Note' fields are inherited from the respective upstream function.

For a list of available arguments, please see sperrorest::partition_disc.

This method is similar to ResamplingSpCVBuffer.

Super class

mlr3::Resampling -> ResamplingSpCVDisc

Active bindings

iters

integer(1) Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Method new()

Create a "Spatial 'Disc' resampling" resampling instance.

For a list of available arguments, please see sperrorest::partition_disc.

Usage

ResamplingSpCVDisc$new(id = "spcv_disc")

Arguments

id

character(1) Identifier for the resampling strategy.

Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingSpCVDisc$instantiate(task)

Arguments

task

Task A task to instantiate.

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingSpCVDisc$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. 10.1109/igarss.2012.6352393.

See Also

ResamplingSpCVBuffer

Examples

Run this code
# NOT RUN {
library(mlr3)
task = tsk("ecuador")

# Instantiate Resampling
rcv = rsmp("spcv_disc", folds = 3L, radius = 200L, buffer = 200L)
rcv$instantiate(task)

# Individual sets:
rcv$train_set(1)
rcv$test_set(1)
# check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

# Internal storage:
rcv$instance # table
# }

Run the code above in your browser using DataLab