Learn R Programming

mlr3spatiotempcv (version 1.0.1)

mlr3spatiotempcv-package: mlr3spatiotempcv: Spatiotemporal Resampling Methods for 'mlr3'

Description

Extends the mlr3 ML framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored.

Arguments

Main resources

Miscellaneous mlr3 content

  • Use cases and examples: https://mlr3gallery.mlr-org.com

  • More classification and regression tasks: mlr3data

  • Connector to OpenML: mlr3oml

  • More classification and regression learners: mlr3learners

  • Even more learners: https://github.com/mlr-org/mlr3extralearners

  • Preprocessing and machine learning pipelines: mlr3pipelines

  • Tuning of hyperparameters: mlr3tuning

  • Visualizations for many mlr3 objects: mlr3viz

  • Survival analysis and probabilistic regression: mlr3proba

  • Cluster analysis: mlr3cluster

  • Feature selection filters: mlr3filters

  • Feature selection wrappers: mlr3fselect

  • Interface to real (out-of-memory) data bases: mlr3db

  • Performance measures as plain functions: mlr3measures

  • Parallelization framework: future

  • Progress bars: progressr

References

Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A (2019). “Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data.” Ecological Modelling, 406, 109--120. 10.1016/j.ecolmodel.2019.06.002.

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models.” bioRxiv. 10.1101/357798.

Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T (2018). “Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation.” Environmental Modelling & Software, 101, 1--9. 10.1016/j.envsoft.2017.12.001.

Zhao Y, Karypis G (2002). “Evaluation of Hierarchical Clustering Algorithms for Document Datasets.” 11th Conference of Information and Knowledge Management (CIKM), 51-524. http://glaros.dtc.umn.edu/gkhome/node/167.

See Also

Useful links: