Learn R Programming

mlr3spatiotempcv (version 2.0.2)

autoplot.ResamplingSpCVBuffer: Visualization Functions for SpCV Buffer Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling objects.

Usage

# S3 method for ResamplingSpCVBuffer
autoplot(
  object,
  task,
  fold_id = NULL,
  plot_as_grid = TRUE,
  train_color = "#0072B5",
  test_color = "#E18727",
  ...
)

# S3 method for ResamplingSpCVBuffer plot(x, ...)

Arguments

object

[Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer.

task

[TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id

[numeric]
Fold IDs to plot.

plot_as_grid

[logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with of ggplot2 objects is returned. Only applies if a numeric vector is passed to argument fold_id.

train_color

[character(1)]
The color to use for the training set observations.

test_color

[character(1)]
The color to use for the test set observations.

...

Passed to geom_sf(). Helpful for adjusting point sizes and shapes.

x

[Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer.

See Also

  • mlr3book chapter on "Spatiotemporal Visualization"

  • autoplot.ResamplingSpCVBlock()

  • autoplot.ResamplingSpCVCoords()

  • autoplot.ResamplingSpCVEnv()

  • autoplot.ResamplingCV()

  • autoplot.ResamplingSptCVCstf()

  • autoplot.ResamplingSptCVCluto()

Examples

Run this code
# \donttest{
if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
  library(mlr3)
  library(mlr3spatiotempcv)
  task = tsk("ecuador")
  resampling = rsmp("spcv_buffer", theRange = 1000)
  resampling$instantiate(task)

  ## single fold
  autoplot(resampling, task, fold_id = 1) +
    ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

  ## multiple folds
  autoplot(resampling, task, fold_id = c(1, 2)) *
    ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}
# }

Run the code above in your browser using DataLab