Learn R Programming

mlr3spatiotempcv (version 2.3.2)

mlr_resamplings_repeated_spcv_disc: (sperrorest) Repeated spatial "disc" resampling

Description

(sperrorest) Repeated spatial "disc" resampling

(sperrorest) Repeated spatial "disc" resampling

Arguments

Parameters

  • repeats (integer(1))
    Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVDisc

Active bindings

iters

integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Inherited methods


Method new()

Create a "Spatial 'Disc' resampling" resampling instance.

For a list of available arguments, please see sperrorest::partition_disc.

Usage

ResamplingRepeatedSpCVDisc$new(id = "repeated_spcv_disc")

Arguments

id

character(1)
Identifier for the resampling strategy.


Method folds()

Translates iteration numbers to fold number.

Usage

ResamplingRepeatedSpCVDisc$folds(iters)

Arguments

iters

integer()
Iteration number.


Method repeats()

Translates iteration numbers to repetition number.

Usage

ResamplingRepeatedSpCVDisc$repeats(iters)

Arguments

iters

integer()
Iteration number.


Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingRepeatedSpCVDisc$instantiate(task)

Arguments

task

mlr3::Task
A task to instantiate.


Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingRepeatedSpCVDisc$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. tools:::Rd_expr_doi("10.1109/igarss.2012.6352393").

Examples

Run this code
library(mlr3)
task = tsk("ecuador")

# Instantiate Resampling
rrcv = rsmp("repeated_spcv_disc",
  folds = 3L, repeats = 2,
  radius = 200L, buffer = 200L)
rrcv$instantiate(task)

# Individual sets:
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

# Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

# Internal storage:
rrcv$instance # table

Run the code above in your browser using DataLab