Learn R Programming

mlr3spatiotempcv (version 2.3.2)

mlr_resamplings_spcv_coords: (sperrorest) Coordinate-based k-means clustering

Description

Splits data by clustering in the coordinate space. See the upstream implementation at sperrorest::partition_kmeans() and Brenning (2012) for further information.

Arguments

Parameters

  • folds (integer(1))
    Number of folds.

Super class

mlr3::Resampling -> ResamplingSpCVCoords

Active bindings

iters

integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Inherited methods


Method new()

Create an "coordinate-based" repeated resampling instance.

For a list of available arguments, please see sperrorest::partition_cv.

Usage

ResamplingSpCVCoords$new(id = "spcv_coords")

Arguments

id

character(1)
Identifier for the resampling strategy.


Method instantiate()

Materializes fixed training and test splits for a given task.

Usage

ResamplingSpCVCoords$instantiate(task)

Arguments

task

mlr3::Task
A task to instantiate.


Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingSpCVCoords$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

Universal partitioning method that splits the data in the coordinate space. Useful for spatially homogeneous datasets that cannot be split well with rectangular approaches like ResamplingSpCVBlock.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. tools:::Rd_expr_doi("10.1109/igarss.2012.6352393").

Examples

Run this code
library(mlr3)
task = tsk("ecuador")

# Instantiate Resampling
rcv = rsmp("spcv_coords", folds = 5)
rcv$instantiate(task)

# Individual sets:
rcv$train_set(1)
rcv$test_set(1)
# check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

# Internal storage:
rcv$instance # table

Run the code above in your browser using DataLab