# NOT RUN {
library(data.table)
# define search space
search_space = ps(
cp = p_dbl(lower = 0.001, upper = 0.1),
minsplit = p_int(lower = 1, upper = 10)
)
# initialize instance
instance = TuningInstanceSingleCrit$new(
task = tsk("iris"),
learner = lrn("classif.rpart"),
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
search_space = search_space,
terminator = trm("evals", n_evals = 5)
)
# generate design
design = data.table(cp = c(0.05, 0.01), minsplit = c(5, 3))
# eval design
instance$eval_batch(design)
# show archive
instance$archive
### error handling
# get a learner which breaks with 50% probability
# set encapsulation + fallback
learner = lrn("classif.debug", error_train = 0.5)
learner$encapsulate = c(train = "evaluate", predict = "evaluate")
learner$fallback = lrn("classif.featureless")
# define search space
search_space = ps(
x = p_dbl(lower = 0, upper = 1)
)
instance = TuningInstanceSingleCrit$new(
task = tsk("wine"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
search_space = search_space,
terminator = trm("evals", n_evals = 5)
)
instance$eval_batch(data.table(x = 1:5 / 5))
# }
Run the code above in your browser using DataLab