Learn R Programming

mlr3tuning (version 0.9.0)

mlr_tuners_nloptr: Hyperparameter Tuning with Non-linear Optimization

Description

TunerNLoptr class that implements non-linear optimization. Calls nloptr::nloptr from package nloptr.

Arguments

Dictionary

This Tuner can be instantiated via the dictionary mlr_tuners or with the associated sugar function tnr():

TunerNLoptr$new()
mlr_tuners$get("nloptr")
tnr("nloptr")

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk") to access and control the logger.

Parameters

algorithm

character(1)

eval_g_ineq

function()

xtol_rel

numeric(1)

xtol_abs

numeric(1)

ftol_rel

numeric(1)

ftol_abs

numeric(1)

start_values

character(1) Create random start values or based on center of search space? In the latter case, it is the center of the parameters before a trafo is applied.

For the meaning of the control parameters, see nloptr::nloptr() and nloptr::nloptr.print.options().

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated and replaced by the Terminator subclasses. The x and function value tolerance termination conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate these conditions, set them to -1.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Simply wrap the function in progressr::with_progress() to enable them. We recommend to use package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerNLoptr

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

TunerNLoptr$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

TunerNLoptr$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated and replaced by the bbotk::Terminator subclasses. The x and function value tolerance termination conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate these conditions, set them to -1.

See Also

Package mlr3hyperband for hyperband tuning.

Other Tuner: mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa, mlr_tuners_grid_search, mlr_tuners_irace, mlr_tuners_random_search

Examples

Run this code
# NOT RUN {
# retrieve task
task = tsk("pima")

# load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))

# hyperparameter tuning on the pima indians diabetes data set
instance = tune(
  method = "nloptr",
  task = task,
  learner = learner,
  resampling = rsmp("holdout"),
  measure = msr("classif.ce"),
  algorithm = "NLOPT_LN_BOBYQA"
)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)
# }

Run the code above in your browser using DataLab