# example only runs if mlr3learners and xgboost are available
if (mlr3misc::require_namespaces(c("mlr3learners", "xgboost"), quietly = TRUE)) {
library(mlr3learners)
# Retrieve task
task = tsk("pima")
# Load learner and set search space
learner = lrn("classif.xgboost",
nrounds = to_tune(upper = 1000, internal = TRUE),
early_stopping_rounds = 10,
validate = "test",
eval_metric = "merror"
)
# Internal hyperparameter tuning on the pima indians diabetes data set
instance = tune(
tnr("internal"),
tsk("iris"),
learner,
rsmp("cv", folds = 3),
msr("internal_valid_score", minimize = TRUE, select = "merror")
)
# best performing hyperparameter configuration
instance$result_learner_param_vals
instance$result_learner_param_vals$internal_tuned_values
}
Run the code above in your browser using DataLab