# Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")
# Load learner and set search space
learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)
# Construct tuning instance
instance = ti(
task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)
)
# Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)
# Run tuning
tuner$optimize(instance)
# Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals
# Train the learner on the full data set
learner$train(task)
# Inspect all evaluated configurations
as.data.table(instance$archive)
Run the code above in your browser using DataLab