Usage
mltoptim(
auglag = list(
kkt2.check = hessian, ### turn off/on numerical hessian
eps = abstol, ### absolute tolerance for _parameter_ updates
itmax = 1000L, ### max number of outer iterations
method = "BFGS", ### inner algorithm
maxit = 500L ### max number of inner (BFGS) iterations
),
spg = list(
ftol = abstol, ### absolute tolerance for _neg. logLik_
quiet = TRUE, ### don't talk
checkGrad = FALSE ### don't check analytical gradient
),
nloptr = list(
algorithm = "NLOPT_LD_MMA", ### inner algorithm
ftol_rel = reltol, ### relative change for _neg. logLik_
ftol_abs = abstol, ### absolute tolerance for _neg. logLik_
maxeval = 1000L ### max number of evaluations
),
constrOptim = list(
method = "BFGS", ### inner algorithm
maxit = 1000L, ### max number of inner (BFGS) iterations
outer.iterations = 500L, ### max number of outer iterations
outer.eps = reltol ### relative change for _neg. logLik_
),
optim = list(
checkconstraints = TRUE, ### return -Inf if violated
method = "BFGS", ### inner algorithm
maxit = 1000L, ### max number of inner (BFGS) iterations
reltol = reltol ### relative change for _neg. logLik_
),
nlminb = list(
checkconstraints = TRUE, ### return -Inf if violated
iter.max = 1000L, ### max number of iterations
eval.max = 1500L, ### max number of function evaluations
rel.tol = reltol, ### relative change for _neg. logLik_
abs.tol = 0.0, ### absolute tolerance (nll is not >= 0)
xf.tol = 1e-10
),
abstol = 1e-07,
reltol = 1e-6,
trace = FALSE,
hessian = FALSE)