Learn R Programming

mmrm (version 0.3.14)

mmrm_tidiers: Tidying Methods for mmrm Objects

Description

[Stable]

These methods tidy the estimates from an mmrm object into a summary.

Usage

# S3 method for mmrm
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

# S3 method for mmrm glance(x, ...)

# S3 method for mmrm augment( x, newdata = NULL, interval = c("none", "confidence", "prediction"), se_fit = (interval != "none"), type.residuals = c("response", "pearson", "normalized"), ... )

Arguments

x

(mmrm)
fitted model.

conf.int

(flag)
if TRUE columns for the lower (conf.low) and upper bounds (conf.high) of coefficient estimates are included.

conf.level

(number)
defines the range of the optional confidence internal.

...

only used by augment() to pass arguments to the predict.mmrm_tmb() method.

newdata

(data.frame or NULL)
optional new data frame.

interval

(string)
type of interval calculation.

se_fit

(flag)
whether to return standard errors of fit.

type.residuals

(string)
passed on to residuals.mmrm_tmb().

Functions

  • tidy(mmrm): derives tidy tibble from an mmrm object.

  • glance(mmrm): derives glance tibble from an mmrm object.

  • augment(mmrm): derives augment tibble from an mmrm object.

See Also

mmrm_methods, mmrm_tmb_methods for additional methods.

Examples

Run this code
fit <- mmrm(
  formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
  data = fev_data
)
# Applying tidy method to return summary table of covariate estimates.
fit |> tidy()
fit |> tidy(conf.int = TRUE, conf.level = 0.9)
# Applying glance method to return summary table of goodness of fit statistics.
fit |> glance()
# Applying augment method to return merged `tibble` of model data, fitted and residuals.
fit |> augment()
fit |> augment(interval = "confidence")
fit |> augment(type.residuals = "pearson")

Run the code above in your browser using DataLab