The Matrix-Normal Inverse-Wishart (MNIW) distribution \((\boldsymbol{X}, \boldsymbol{V}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{\Psi}, \nu)\) on random matrices \(\boldsymbol{X}_{p \times q}\) and symmetric positive-definite \(\boldsymbol{V}_{q\times q}\) is defined as
$$
\begin{array}{rcl}
\boldsymbol{V} & \sim & \textrm{Inverse-Wishart}(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{X} \mid \boldsymbol{V} & \sim & \textrm{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{V}),
\end{array}
$$
where the Matrix-Normal distribution is defined as the multivariate normal
$$
\textrm{vec}(\boldsymbol{X}) \sim \mathcal{N}(\textrm{vec}(\boldsymbol{\Lambda}), \boldsymbol{V} \otimes \boldsymbol{\Sigma}),
$$
where \(\textrm{vec}(\boldsymbol{X})\) is a vector stacking the columns of \(\boldsymbol{X}\), and \(\boldsymbol{V} \otimes \boldsymbol{\Sigma}\) denotes the Kronecker product.
rmniw()
is a convenience wrapper to rMNIW(Sigma = Omega, prec = TRUE)
, for the common situation in Bayesian inference with conjugate priors when between-row variances are naturally parametrized on the precision scale.