test.HJG: Henze-Jimenes-Gamero test of multivariate normality
Description
Computes the multivariate normality test of Henze and Jimenes-Gamero (2019) in dependence of a tuning parameter a.
Usage
test.HJG(data, a = 1, MC.rep = 10000, alpha = 0.05)
Arguments
data
a n x d matrix of d dimensional data vectors.
a
positive numeric number (tuning parameter).
MC.rep
number of repetitions for the Monte Carlo simulation of the critical value.
alpha
level of significance of the test.
Value
a list containing the value of the test statistic, the approximated critical value and a test decision on the significance level alpha:
$Test
name of the test.
$param
value tuning parameter.
$Test.value
the value of the test statistic.
$cv
the approximated critical value.
$Decision
the comparison of the critical value and the value of the test statistic.
#'
Details
This functions evaluates the teststatistic with the given data and the specified tuning parameter a.
Each row of the data Matrix contains one of the n (multivariate) sample with dimension d. To ensure that the computation works properly
\(n \ge d+1\) is needed. If that is not the case the test returns an error.
References
Henze, N., Jimenez-Gamero, M.D. (2019) "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function", TEST, 28, 499-521, DOI