Learn R Programming

mnt (version 1.3)

test.HJG: Henze-Jimenes-Gamero test of multivariate normality

Description

Computes the multivariate normality test of Henze and Jimenes-Gamero (2019) in dependence of a tuning parameter a.

Usage

test.HJG(data, a = 1, MC.rep = 10000, alpha = 0.05)

Arguments

data

a n x d matrix of d dimensional data vectors.

a

positive numeric number (tuning parameter).

MC.rep

number of repetitions for the Monte Carlo simulation of the critical value.

alpha

level of significance of the test.

Value

a list containing the value of the test statistic, the approximated critical value and a test decision on the significance level alpha:

$Test

name of the test.

$param

value tuning parameter.

$Test.value

the value of the test statistic.

$cv

the approximated critical value.

$Decision

the comparison of the critical value and the value of the test statistic.

#'

Details

This functions evaluates the teststatistic with the given data and the specified tuning parameter a. Each row of the data Matrix contains one of the n (multivariate) sample with dimension d. To ensure that the computation works properly \(n \ge d+1\) is needed. If that is not the case the test returns an error.

References

Henze, N., Jimenez-Gamero, M.D. (2019) "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function", TEST, 28, 499-521, DOI

See Also

HJG

Examples

Run this code
# NOT RUN {
test.HJG(MASS::mvrnorm(50,c(0,1),diag(1,2)),a=1.5,MC.rep=500)

# }

Run the code above in your browser using DataLab