# load sample models:
data(rotif.mods)
# choose a particular model to play with:
mod <- rotif.mods$models[[1]]
# plot this model:
plotGLM(model = mod)
# compute the Root Mean Square Error of the model:
RMSE(model = mod)
# extract variable importance from the model:
varImp(model = mod)
# calculate the area under the ROC curve for the model:
AUC(model = mod)
# calculate some threshold-based measures for this model:
threshMeasures(model = mod, thresh = 0.5)
threshMeasures(model = mod, thresh = "preval")
# calculate optimal thresholds based on several criteria:
optiThresh(model = mod, measures = c("CCR", "Sensitivity", "kappa", "TSS"),
ylim = c(0, 1), pch = 20, cex = 0.5)
# calculate the optimal threshold balancing two evaluation measures:
optiPair(model = mod, measures = c("Sensitivity", "Specificity"))
# calculate the Boyce index, explained deviance, Hosmer-Lemeshow goodness-of-fit,
# Miller's calibration stats, and (pseudo) R-squared values for the model:
Boyce(model = mod)
Dsquared(model = mod)
HLfit(model = mod, bin.method = "quantiles")
MillerCalib(model = mod)
RsqGLM(model = mod)
# calculate a bunch of evaluation measures for a set of models:
multModEv(models = rotif.mods$models[1:4], thresh = "preval",
bin.method = "quantiles")
Run the code above in your browser using DataLab