
Last chance! 50% off unlimited learning
Sale ends in
Simultanous confidence statements for the existence and location of local increases and decreases of a density f, computed on the approximating set of intervals.
modeHuntingApprox(X.raw, lower = -Inf, upper = Inf,
d0 = 2, m0 = 10, fm = 2, crit.vals, min.int = FALSE)
The set
The set
The set
The set
Vector of observations.
Lower support point of
Upper support point of
Initial parameter for the grid resolution.
Initial parameter for the number of observations in one block.
Factor by which
2-dimensional vector giving the critical values for the desired level.
If min.int = TRUE
, the set of minimal intervals is output, otherwise all intervals with a test
statistic above the critical value are given.
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Guenther Walther, gwalther@stanford.edu,
https://gwalther.su.domains/
See blocks
for details how modeHunting
for
a proper introduction to the notation used here.
The function modeHuntingApprox
computes
If min.int = TRUE
, the set
Duembgen, L. and Walther, G. (2008). Multiscale Inference about a density. Ann. Statist., 36, 1758--1785.
Rufibach, K. and Walther, G. (2010). A general criterion for multiscale inference. J. Comput. Graph. Statist., 19, 175--190.
modeHunting
, modeHuntingBlock
, and cvModeApprox
.
## for examples type
help("mode hunting")
## and check the examples there
Run the code above in your browser using DataLab