locglmfit_sparse_private: Local generalized linear fitting with sparse matrices
Description
THIS IS AN INTERNAL FUNCTION: USE LOCGLMFIT FOR BEST RESULTS. Fisher scoring method for local polynomial estimator of a psychometric function (PF).
Usage
locglmfit_sparse_private( xfit, r, m, x, h, returnH, link, guessing, lapsing, K, p, ker, maxiter, tol )
Arguments
xfit
points in which to calculate the estimate
r
number of successes in points x
m
number of trials in points x
x
stimulus values
h
bandwidths
returnH
Boolean; Return or not the hat matrix H? default is TRUE
link
name of the link function to be used; default is "logit"
guessing
guessing rate; default is 0
lapsing
lapsing rate; default is 0
K
power parameter for Weibull and reverse Weibull link; default is 2
p
degree of the polynomial; default p = 1
ker
kernel function for weights; default "dnorm"
maxiter
maximum number of iterations in Fisher scoring; default is 50
tol
tolerance level at which to stop Fisher scoring; default is 1e-6
Value
valueObject with 2 or 3 components:
pfit: value of the local polynomial estimate at points xfit
etafit: estimate of eta (link of pfit)
H: hat matrix (OPTIONAL)