powered by
Considering a Multivariate Normal Distribution calculates the log-density $$ld = -0.5 * (n * log(2 * \pi) * log(|\Sigma|) + y^T \Sigma y)$$
ldmvnorm(y, mu, E)
observations, numeric or reference object of class 'number'
mean vector, numeric of reference object of class 'number'
covariance matrix, numeric of reference object of class 'number'
Returns a 'numeric' or a reference object of class 'number'
# NOT RUN { modello.init(10, 10, 10, 10) y = number(rnorm(10)) mu = number(rep(0, 10)) E = number(diag(1, 10)) ld = ldmvnorm(y, mu, E) print(ld) print(ld$v) modello.close() # }
Run the code above in your browser using DataLab