# NOT RUN {
# load example data (Bank clients with/without a term deposit - see ?bank_td for details)
data("bank_td")
# prepare data for training model for binomial target has_td and train models
train_index = sample(seq(1, nrow(bank_td)),size = 0.5*nrow(bank_td) ,replace = FALSE)
train = bank_td[train_index,c('has_td','duration','campaign','pdays','previous','euribor3m')]
test = bank_td[-train_index,c('has_td','duration','campaign','pdays','previous','euribor3m')]
#train models using caret... (or use mlr or H2o or keras ... see ?prepare_scores_and_ntiles)
# setting caret cross validation, here tuned for speed (not accuracy!)
fitControl <- caret::trainControl(method = "cv",number = 2,classProbs=TRUE)
# random forest using ranger package, here tuned for speed (not accuracy!)
rf = caret::train(has_td ~.,data = train, method = "ranger",trControl = fitControl,
tuneGrid = expand.grid(.mtry = 2,.splitrule = "gini",.min.node.size=10))
# mnl model using glmnet package
mnl = caret::train(has_td ~.,data = train, method = "glmnet",trControl = fitControl)
# load modelplotr
library(modelplotr)
# transform datasets and model objects to input for modelplotr
scores_and_ntiles <- prepare_scores_and_ntiles(datasets=list("train","test"),
dataset_labels = list("train data","test data"),
models = list("rf","mnl"),
model_labels = list("random forest","multinomial logit"),
target_column="has_td",
ntiles=10)
plot_input <- plotting_scope(prepared_input = scores_and_ntiles)
plot_multiplot(data=plot_input)
plot_multiplot(data=plot_input,highlight_ntile = 2)
# }
Run the code above in your browser using DataLab