library(tibble)
library(dplyr)
library(timetk)
library(yardstick)
fake_data <- tibble(
y = c(1:12, 2*1:12),
yhat = c(1 + 1:12, 2*1:12 - 1)
)
# ---- HOW IT WORKS ----
# Default Forecast Accuracy Metric Specification
default_forecast_accuracy_metric_set()
# Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set()
# Apply the metric summarizer to new data
calc_default_metrics(fake_data, y, yhat)
# ---- ADD MORE PARAMETERS ----
# Can create a version of mase() with seasonality = 12 (monthly)
mase12 <- metric_tweak(.name = "mase12", .fn = mase, m = 12)
# Add it to the default metric set
my_metric_set <- default_forecast_accuracy_metric_set(mase12)
my_metric_set
# Apply the newly created metric set
my_metric_set(fake_data, y, yhat)
Run the code above in your browser using DataLab