powered by
The ER function is an implementation of the ER-algorithm of Little and Smith (1987).
ER
ER( data, weights, alpha = 0.01, psi.par = c(2, 1.25), em.steps = 100, steps.output = FALSE, Estep.output = FALSE, tolerance = 1e-06 )
sample.size
Number of observations
number.of.variables
Number of variables
significance.level
alpha
computation.time
Elapsed computation time
good.data
Indices of the data in the final good subset
outliers
Indices of the outliers
center
Final estimate of the center
scatter
Final estimate of the covariance matrix
dist
Final Mahalanobis distances
rob.weights
Robustness weights in the final EM step
a data frame or matrix with the data.
sampling weights.
probability for the quantile of the cut-off.
further parameters passed to the psi-function.
number of iteration steps of the EM-algorithm.
if TRUE, verbose output.
TRUE
if TRUE, estimators are output at each iteration.
convergence criterion (relative change).
Beat Hulliger
The M-step of the EM-algorithm uses a one-step M-estimator.
Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.
BEM
data(bushfirem, bushfire.weights) det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05, steps.output = TRUE, em.steps = 100, tol = 2e-6) PlotMD(det.res$dist, ncol(bushfirem))
Run the code above in your browser using DataLab