When the time series data is not random and influenced by auto-correlation, trend component is removed from the data and is Pre-Whitened prior to application of trend test in TFPW approach.
tfpwmk(x)
- Time series data vector
Z-Value - Z-Statistic after Trend-Free Prewhitening
Sen's Slope - Sen's slope for TFPW series
old. Sen's Slope - Sen's slope for Original data series 'x'
P-value - P-Value after Trend-Free Prewhitening
S - Mann-Kendall 'S'- statistic
Var(s) - Variance of 's'
Tau - Mann-Kendall's Tau
Trend component is removed from the original data and sujected to Pre-Whitening by calculating lag-1 serial correlation coefficient. The data thus generated is tested with Mann-Kendall trend test.
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245<U+2013>259. <doi:10.1017/CBO9781107415324.004>
Kendall, M. (1975). Multivariate analysis. Charles Griffin. Londres. 0-85264-234-2.
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall<U+2019>s Tau. Journal of the American Statistical Association, 63(324), 1379. <doi:10.2307/2285891>
Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9), 1807<U+2013>1829. <doi:10.1002/hyp.1095>.
Salas, J.D., (1980). Applied modeling of hydrologic times series. Water Resources Publication.
# NOT RUN {
x<-c(Nile)
tfpwmk(x)
# }
Run the code above in your browser using DataLab