#######################################################
# Load some bit TIFs (TIFs with just the cloud indicators extracted)
# and add up the number of cloudy days, out of the total
# number of observation attempts
#######################################################
# Code excluded from CRAN check because it depends on modiscdata
## Not run:
# library(devtools)
# # The modiscdata (MODIS c=cloud data=data) package is too big for CRAN (60 MB); so it is available on github:
# # https://github.com/nmatzke/modiscdata
# # If we can't get install_github() to work, try install_url():
# # install_github(repo="modiscdata", username="nnmatzke")
# install_url(url="https://github.com/nmatzke/modiscdata/archive/master.zip")
# library(modiscdata)
# tifsdir = system.file("extdata/2002_bit/", package="modiscdata")
# tiffns = list.files(tifsdir, pattern=".tif", full.names=TRUE)
# tiffns
#
# library(rgdal) # for readGDAL
#
# # numpixels in subset
# xdim = 538
# ydim = 538
#
# # Read the grid and the grid metadata
# coarsen_amount = 1
# xdim_new = xdim / floor(coarsen_amount)
# ydim_new = ydim / floor(coarsen_amount)
#
#
# sum_nums = NULL
# for (j in 1:length(tiffns))
# {
# fn = tiffns[j]
#
# grd = readGDAL(fn, output.dim=c(ydim_new, xdim_new))
#
# grdr = raster(grd)
# pointscount_on_SGDF_points = coordinates(grd)
# grdr_vals = extract(grdr, pointscount_on_SGDF_points)
#
# # Convert to 1/0 cloudy/not
# data_grdr = grdr_vals
# data_grdr[grdr_vals > 0] = 1
#
# grdr_cloudy = grdr_vals
# grdr_cloudy[grdr_vals < 4] = 0
# grdr_cloudy[grdr_vals == 4] = 1
#
# # Note: Don't run the double-commented lines unless you want to collapse different bit values.
# # grdr_clear = grdr_vals
# # grdr_clear[grdr_vals == 4] = 0
# # grdr_clear[grdr_vals == 3] = 1
# # grdr_clear[grdr_vals == 2] = 1
# # grdr_clear[grdr_vals == 1] = 1
# # grdr_clear[grdr_vals == 0] = 0
# #
#
# if (j == 1)
# {
# sum_cloudy = grdr_cloudy
# #sum_not_cloudy = grdr_clear
# sum_data = data_grdr
# } else {
# sum_cloudy = sum_cloudy + grdr_cloudy
# sum_data = sum_data + data_grdr
# }
#
# }
#
#
# ## Calculate percentage cloudy
# sum_nums = sum_cloudy / sum_data
#
# grd_final = numslist_to_grd(numslist=sum_nums, grd=grd, ydim_new=ydim_new, xdim_new=xdim_new)
#
# # Display the image (this is just the sum of a few images)
# image(grd_final)
#
# ## End(Not run)
Run the code above in your browser using DataLab