Learn R Programming

modsem (version 1.0.11)

estimate_h0: Estimate baseline model for modsem models

Description

Estimates a baseline model (H0) from a given model (H1). The baseline model is estimated by removing all interaction terms from the model.

Usage

estimate_h0(object, warn_no_interaction = TRUE, ...)

# S3 method for modsem_da estimate_h0(object, warn_no_interaction = TRUE, ...)

# S3 method for modsem_pi estimate_h0(object, warn_no_interaction = TRUE, reduced = TRUE, ...)

Arguments

object

An object of class modsem_da or modsem_pi.

warn_no_interaction

Logical. If `TRUE`, a warning is issued if no interaction terms are found in the model.

...

Additional arguments passed to the `modsem_da` function, overriding the arguments in the original model.

reduced

Should the baseline model be a reduced version of the model? If TRUE, the latent product term and its (product) indicators are kept in the model, but the interaction coefficients are constrained to zero. If FALSE, the interaction terms are removed completely from the model. Note that the models will no longer be nested, if the interaction terms are removed from the model completely.

Methods (by class)

  • estimate_h0(modsem_da): Estimate baseline model for modsem_da objects

  • estimate_h0(modsem_pi): Estimate baseline model for modsem_pi objects

Examples

Run this code
if (FALSE) {
m1 <- "
 # Outer Model
 X =~ x1 + x2 + x3
 Y =~ y1 + y2 + y3
 Z =~ z1 + z2 + z3

 # Inner model
 Y ~ X + Z + X:Z
"

# LMS approach
est_h1 <- modsem(m1, oneInt, "lms")
est_h0 <- estimate_h0(est_h1, calc.se=FALSE) # std.errors are not needed
compare_fit(est_h1 = est_h1, est_h0 = est_h0)

# Double centering approach
est_h1 <- modsem(m1, oneInt, method = "dblcent")
est_h0 <- estimate_h0(est_h1, oneInt)

compare_fit(est_h1 = est_h1, est_h0 = est_h0)

# Constrained approach
est_h1 <- modsem(m1, oneInt, method = "ca")
est_h0 <- estimate_h0(est_h1, oneInt)

compare_fit(est_h1 = est_h1, est_h0 = est_h0)
}

Run the code above in your browser using DataLab