GIS(x, geneSet, nf=NA, barcol=NA, topN=NA, plot=TRUE, Fvalue=FALSE, ff=NA, cor=FALSE)
mgsa-class
.
data.frame
contains three columns. The first column is the feature name,
the second columns is the gene influential score. The third columns indicates from where the
feature/gene is selected.
log2(var(GS_-i)/var(GS)) where GS is the gene set score, and the GS_-i is a recalculate of gene set score without i'th feature. var() is the variance.
In the supervised manner, the value is caluclated as the F-ratio over a class vector:
log2(F(GS_-i)/F(GS))
Where F() is the calculation of F-ratio. The unsupervised GIS is encouraged since it works better for most of the cases in practice.
annotate.gs
# library(mogsa)
# loading gene expression data and supplementary data
data(NCI60_4array_supdata)
data(NCI60_4arrays)
mgsa <- mogsa(x = NCI60_4arrays, sup=NCI60_4array_supdata, nf=9,
proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
allgs <- colnames(NCI60_4array_supdata[[1]])
# unsupervised measurement
GIS(mgsa, allgs[1], topN = 5)
# supervised measurement
tissueType <- as.factor(sapply(strsplit(colnames(NCI60_4arrays$agilent), split="\\."), "[", 1))
GIS(mgsa, allgs[1], topN = 5, Fvalue = TRUE, ff = tissueType)
# more PCs to calcualte
GIS(mgsa, allgs[1], nf = 20, topN = 5, Fvalue = TRUE, ff = tissueType)
Run the code above in your browser using DataLab