dpostNIW evalutes the posterior Normal-IWishart density at (mu,Sigma).
rpostNIW draws independent samples.
This posterior corresponds to a Normal model for the data
n x p data matrix (individuals in rows, variables in columns)
g
Prior dispersion parameter for mu
mu0
Prior mean for mu
nu0
Prior degrees of freedom for Sigma
S0
Prior scale matrix for Sigma, by default set to I/nu0
logscale
set to TRUE to get the log-posterior density
n
Number of samples to draw
precision
If set to TRUE, samples from the precision
matrix (inverse of Sigma) are returned instead
Value
dpostNIW returns the Normal-IW posterior density evaluated at
(mu,Sigma).
rpostNIW returns a list with two elements. The first element are
posterior draws for the mean. The second element are posterior draws for
the covariance (or its inverse if precision==TRUE). Only
lower-diagonal elements are returned (Sigma[lower.tri(Sigma,diag=TRUE)]).
See Also
diwish for the inverse Wishart prior density,
marginalNIW for the integrated likelihood under a
Normal-IW prior