library(cluster)
data(ligophorus_tpsdata)
data(spcolmap)
#A low quality specimen
Qscore(pwdist(ligophorus_tpsdata$bantingensis[[5]],average=FALSE))
#A high quality specimen
Qscore(pwdist(ligophorus_tpsdata$bantingensis[[11]],average=FALSE))
#Useful diagnostic plots
Qmat <- vector("list",length(ligophorus_tpsdata))
for(i in 1:13){
Qmat[[i]] <- do.call(rbind,lapply(ligophorus_tpsdata[[i]],
function(k) Qscore(pwdist(k, average=FALSE))))
rownames(Qmat[[i]]) <- rep(names(ligophorus_tpsdata)[i],nrow(Qmat[[i]]))
}
names(Qmat) <- names(ligophorus_tpsdata)
#Box plot for quality score by species, sorted using descending median quality score
Q <- lapply(Qmat, function(k) k[,3])
boxplotSort(Q, italic=TRUE, ylab="Quality score", df=1)
Run the code above in your browser using DataLab