monoBonferroni: Test of weak monotonicity using Bonferroni bounds
Description
monoBonferroni implements the test of weak monotonicity using Bonferroni bounds described in Patton & Timmermann (2010, JFE):
Test 1:
\(H0*: d1 >= 0, d2 >= 0, ..., dK >= 0\)
vs.
\(H1*: dj < 0 for some j=1,2,..,K\)
Test 2:
\(H0**: d1 <= 0, d2 <= 0, ..., dK <= 0\)
vs.
\(H1**: dj > 0 for some j=1,2,..,K.\)
Usage
monoBonferroni(data, difference = FALSE)
Arguments
data
an object of class "matrix" (or one that
can be coerced to that class): asset returns or differences in asset returns for the sorting application.
difference
An object of class "logical": If data is already differences in asset returns, use TRUE. Otherwise data will be transformed to difference returns \(r_p(n+1) - r_p(n)\) between portfolio \(n+1 \) and portfolio \(n\)
The returning list contains p-values (see Note) using Bonferroni-bounds for the
two statistical tests described above:
TestOnePvalBonferroni:
p-value for \(H0*\) of Test 1.
TestTwoPvalBonferroni:
p-value for \(H0**\) of Test 2.
References
Patton, A. and Timmermann, A. (2010):
Monotonicity in asset returns: New testes with applications to the term structure, the CAPM, and portfolio sorts.
Journal of Financial Economics, 98, No. 3, p. 605--625.
10.1016/j.jfineco.2010.06.006.
Bonferroni, Carlo E. (1936):
Teoria statistica delle classi e calcolo delle probabillita. [Statistical Class Theory and Calculation of Probability]Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali di Firenze, 8, p. 1--62.
# NOT RUN {## load non-difference return data and calculate the p-value for H0* of Test 1.data(demo_returns)
tmp <- monoBonferroni(demo_returns, difference = FALSE)
tmp$TestOnePvalBonferroni
# }