Estimates the confidence interval using the methods provided by types
.
tau
must be a function that calculates tau.n
from its argument n
.
If it is not provided, it is estimated with estimate.tau
using the default settings of this function.
mboot.ci(boot.out, conf = 0.95, tau = NULL, types = "all", ...)
A list of confidence intervals for the given types.
The simulated bootstrap distribution from the mboot
call.
The confidence level.
Function that returns its only argument applied to tau. If NULL
, estimate.tau
is used to estimate tau
.
The types of confidence intervals to be calculated. The value can be 'all' for all types, or a
subset of c("basic", "norm", "sherman")
.
When tau
is omitted, the additional parameters are passed to statistic
when estimating tau
.
The additional parameters are passed to the statistic function if tau
was omitted.
To specify the arguments of the estimate.tau
, call this function directly and use its return value as tau
argument.
For the type sherman
, tau
is not needed and is therefore not calculated.
Politis D.N. and Romano J.P. (1994) Large sample confidence regions based on subsamples under minimal assumptions The Annals of Statistics, 22(4):2031-2050, doi:10.1214/aos/1176325770.
Sherman M. and Carlstein E. (2004) Confidence intervals based on estimators with unknown rates of convergence. Computional statistics & data analysis, 46(1):123-136.
mboot estimate.tau
data <- runif(1000)
estimate.max <- function(data, indices) {return(max(data[indices]))}
tau <- \(x){x} # convergence rate
boot.out <- mboot(data, estimate.max, R = 1000, m = 2*sqrt(NROW(data)), replace = FALSE)
cis <- mboot.ci(boot.out, 0.95, tau, c("all"))
ci.basic <- cis$basic
print(ci.basic)
Run the code above in your browser using DataLab